If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-32t+32=0
a = 5; b = -32; c = +32;
Δ = b2-4ac
Δ = -322-4·5·32
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{6}}{2*5}=\frac{32-8\sqrt{6}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{6}}{2*5}=\frac{32+8\sqrt{6}}{10} $
| -7q+2=10 | | 81/3=1/3(9h12) | | 20-6+4k=-2-2k | | -2=x-21.6/4.9 | | 7x^2+13x=15 | | 8x-2/3=10 | | 4p+9=50 | | 4t+-10t+-6=-18 | | 9p+4=50 | | 5(6y-2)=12y | | 3=2(1/4s-5)+3 | | 3(r-6)+2=4(r+2)-26 | | 3=2(1/4s | | 6-v=13 | | (x/x+3)+(1/x)-4=(9/x^2+3x) | | 1x(0+0)=1 | | (20+x)/2=0 | | 8x+12x+12+40=180 | | 5-4(2x-5)=15 | | (2x)(x)=1250 | | 32-2x+2x+18+20x+10=180 | | 40-10x=0 | | 8x+87=4x+9 | | 5(x-2)=7x+4 | | 8y+5=13y+25 | | 4(q-1)-3q=4(3q+8) | | 7y-10=-31 | | -2(r-5)=-6r+4(8+r) | | -3x+5=-8x+30=90 | | 7r+4r=-11 | | -3(c-9)=6 | | 11h+9h-1=19 |